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Abstract: Advanced electronic materials are the fundamental building blocks of integrated circuits (ICs). The microscale proper-
ties of electronic materials (e.g., crystal structures, defects, and chemical properties) can have a considerable impact on the per-
formance of ICs. Comprehensive characterization and analysis of the material in real time with high-spatial resolution are indis-
pensable. In situ transmission electron microscope (TEM) with atomic resolution and external field can be applied as a physical
simulation  platform  to  study  the  evolution  of  electronic  material  in  working  conditions.  The  high-speed  camera  of  the in  situ
TEM generates a high frame rate video, resulting in a large dataset that is beyond the data processing ability of researchers us-
ing the traditional method. To overcome this challenge, many works on automated TEM analysis by using machine-learning al-
gorithm  have  been  proposed.  In  this  review,  we  introduce  the  technical  evolution  of  TEM  data  acquisition,  including  analysis,
and  we  summarize  the  application  of  machine  learning  to  TEM  data  analysis  in  the  aspects  of  morphology,  defect,  structure,
and spectra. Some of the challenges of automated TEM analysis are given in the conclusion.
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1.  Introduction

The qualities  of  electronic  materials  can have a  consider-
able  impact  on  the  performance  of  electronic  devices[1−3].
Even  a  nanoscale  defect  could  result  in  the  failure  of  a
device[4, 5].  Therefore,  comprehensive  analysis  of  the  electric
material  is  indispensable.  The  transmission  electron  micro-
scope  (TEM)  has  been  widely  applied  for  the  structure-prop-
erty  study  of  materials  and  devices  due  to  its  high-spatial
resolution and versatile characterization abilities[6, 7].  With the
developed  aberration  correction  technology,  the  spatial  re-
solution of the TEM has been improved to 0.5 Å. This allows sci-
entists to directly observe the atomic configuration of materi-
als[8, 9]. In addition to morphology, TEM can also provide struc-
ture,  composition,  and  even  valence  state[10−13].  The  recently
developed in  situ TEM  technology  also  provides  a  real-time
method to characterize and manipulate materials with extern-
al  stimuli,  such  as  electrical,  mechanical,  thermal,  optical
fields, and liquid/gas environments[6, 14−17].

The  sample  information  obtained  by  TEM  characteriza-
tion  is  presented  in  the  form  of  images[18−22].  Great  progress
has  been  made  in  the  acquisition  and  processing  of  TEM  im-
ages,  as  shown  in Fig.  1.  In  the  early  stage,  the  TEM  images
were captured by camera films that  have to be developed to
get the sample information. However, this process is complic-
ated, time-consuming, and requires training to obtain a quali-
fied image[23−27]. The data is not digitalized and the image ana-
lysis has to be calculated by hand, which results in low accur-

acy and efficiency. With the improved performance of photo-
sensitive  devices  and  the  increased  pixel  density,  CCD
(charge-coupled  device)  cameras  replaced  film  cameras  for
TEM image recording. The CCD camera converts electronic sig-
nals  into  photon  signals  through  scintillators.  Then,  the
photon  signals  activate  the  silicon  epitaxial  layer  and  gener-
ate  charges.  The  accumulated  charges  are  converted  into
voltage  and  stored  in  memory,  forming  digital  images.  The
digitalized TEM image can easily  be processed by profession-
al  software,  such  as  digital  micrograph  and  so  on,  which
greatly  improves  the  accuracy  and  efficiency  of  TEM  data
analysis[28].  The  forthcoming  TEM  camera  based  on  comple-
mentary metal oxide semiconductor (CMOS) could directly de-
tect electron signals without a scintillator[29−32]. This dramatic-
ally  improves  the  efficiency  and  avoids  the  loss  of  signals
from scintillators, which promotes the quality of imaging, espe-
cially in the aspects of signal-to-noise ratio and low dose ima-
ging[33, 34].  TEM  methods  have  also  been  adopted  to  study
low  dimensional  materials[35−39].  In  addition,  artificial  intelli-
gence (e.g.,  machine learning) will  be widely applied to auto-
matically  process  a  large  quantity  of in  situ TEM  images  with
high temporal resolution.

Unlike the color-scaled images in a natural scene, TEM im-
ages  that  are  formed  by  an  electron  signal  are  grayscaled
maps.  In  addition,  the  TEM  image  has  high  statistical  noise,
low  contrast,  and  blurred  boundaries,  resulting  from  condi-
tions  such  as  the  thickness  of  the  sample,  the  sensibility  of
the  materials  to  electron  beam,  and  so  on.  To  mitigate  the
damage of the sample induced from the electron beam irradi-
ation,  a  common  solution  is  to  reduce  the  shooting  time  at
the sacrifice of resolution[40].

Analysis of TEM data is time-consuming and requires spe-
cialized  knowledge,  which  mainly  results  from  two  aspects.
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First,  the  features  in  TEM  images  are  usually  complex  and
vague, which increases the difficulties for fast and accurate in-
formation  extraction.  Second,  a  large  number  of  TEM  images
can  easily  be  obtained  for  each  TEM  experiment,  especially
for video streams that are recorded during in situ TEM experi-
ments.  Even  at  the  present  stage,  more  than  a  thousand  im-
ages  can  be  acquired  within  several  minutes.  These  issues
have led to the demand for  a  way to efficiently  analyze large
and complicated TEM datasets[41−43].

The  resurgence  of  machine  learning  has  greatly  im-
pacted  image  recognition  and  offers  an  excellent  opportun-
ity  for  automated  TEM  data  analysis[44−49].  Machine-learning
methods  are  mathematical  models  that  are  used  to  help  a
computer  learn  to  automatically  process  data,  imitating  the
methods  that  humans  use.  Machine  learning  is  generally  di-
vided into three subcategories:  supervised,  unsupervised and
reinforcement  machine  learning.  The  difference  between  su-
pervised  and  unsupervised  methods  lies  in  whether  or  not
the dataset is labeled. The reinforcement method learns from
trial  and  error  through  a  feedback  loop.  Neural  networks  are
a  fast-developing  machine-learning  method  that  provide
high accuracy in image recognition and require less human in-
tervention.  The  first  convolution  neural  network  (CNN)  mod-
el,  LeNet,  was  reported by  LeCun et  al.  in  1989,  and adopted
local response and pooling to enhance performance of the net-
work[50].  Subject  to  the  computer  power  at  that  time,  ma-
chine  learning  did  not  become  popular  until  the  AlexNet
came  out  in  2012.  The  network  imported  dropout  and  data
augmentation  to  avoid  overfitting,  and  rectified  linear  units
(ReLUs)  were  used  as  a  new  activation  function,  which  was  a
big  step  forward  in  computer  vision[51].  Recently,  machine
learning based methods have been successfully used in medic-
al and natural image recognition[52−54].

In  the  field  of  TEM  high-throughput  images  analysis,
tasks concern segmentation or classification of specific charac-
teristics of  interest from material  images.  Neural  networks for
automated  analysis  of  TEM  images  mainly  include  a  CNN  al-
gorithm,  a  fully  convolution  network  (FCN)  algorithm  and  a
U-Net  algorithm.  The  CNN  is  determined  by  three  compon-
ents, the convolutional layer, pooling layer and a fully-connec-
ted  (FC)  layer.  The  first  two  layers  produce  feature  maps  and
reduce dimensionalities. The last, FC, layer produces a one-di-
mensional  vector  for  classification  tasks.  Unlike  CNN  scarify-
ing  of  the  spatial  information  of  input  images,  the  FCN  per-
forms  classification  for  each  pixel  of  the  image  by  replacing
the FC layer with the convolutional  layer.  The U-Net is  an im-
proved  FCN  structure  with  encoder  and  decoder  networks,
which has symmetric skip-connected contracting and expans-
ive  paths  to  capture  features  and  for  accurate  localization.
The  U-Net  can  be  trained  by  the  available  labeled  samples
with higher efficiency. U-net has been widely adapted in med-

 

Fig. 1. (Color online) The evolution of TEM data acquisition and processing.

 

Fig.  2.  (Color  online)  Publications  from  the  Web  of  Science  with  the
keywords of TEM and machine learning.
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ical  image  identification,  due  to  its  efficiency  and  precision.
U-net  is  comparatively  more  adaptable  for  TEM  image  seg-
mentation  tasks,  which  is  similar  to  that  of  medical  images
tasks.

Efforts  have  been  made  to  integrate  automatic  ap-
proaches with imaging processing to cope with the obstacles
existing  in  TEM  image  analysis[55−61].  As  shown  in Fig.  2,  the
publication  trend  suggests  a  sharp  increase  number  of  stud-
ies using the machine-learning method for TEM image analys-
is. Along with the development of computing power, the auto-
matic  analysis  of  TEM  imaging  by  machine  learning  is  very
promising  and  still  in  its  initial  stages,  and  deserves  more  ef-
fort.  Machine  learning  has  contributed  to  the  analysis  of  the
nanomaterial  images  by  TEM  characterization  in  the  aspects
of  defect,  morphology,  structure,  and  spectra,  as  shown  in
Fig.  3[62−67].  The  main  information  of  the  typical  works  that
have been published recently is summarized in Table 1.

In  this  review,  the  recent  developments  of  the  TEM  data
analysis  based on machine learning are  summarized.  We first
present  the  background and technique evolution of  the  TEM

data  acquisition  and  analysis.  Then,  TEM  data  analysis  is  dis-
cussed in detail  from four aspects:  morphology,  defect,  struc-
ture,  and  spectra  by  the  application  of  various  neural  net-
works.  Finally,  in  the  conclusion  we  state  the  challenges  of
artificial intelligence assisted TEM data analysis. 

2.  Machine learning based analysis of TEM
 

2.1.  Analysis of defects

Meanwhile,  2D  materials  with  ultrathin  geometry,  large
specific  area,  and  rich  physical  properties  are  widely  applied
in the fields of electronics, sensors, energy storage and conver-
sion[73−79].  The study of local defects has for a long time been
an important research field in material science because it  can
greatly affect the physical and chemical behaviors of 2D mater-
ials,  even  with  a  limited  number  of  dopants  or  vacancies[80].
The defects of a 2D material could influence the semiconduct-
or  carrier  type,  the  catalytic,  and  optical  properties[81−85].  In
terms  of  defect  analysis,  determining  atom  position  is  indis-
pensable[86].  Scanning  transmission  electron  microscopy
(STEM) is  an appropriate  characterization method for  atomic-
defect investigation due to two aspects: the sub-angstrom spa-
tial  resolution  and  the  contrast  sensitivity  to  the  square  of
the  atomic  number[87, 88].  STEM  characterization  uses  a  fo-
cused electron beam to probe each atom of  the TEM sample
and then collect the scattered electron signals to form the im-
age contrast. An element with a higher atomic number can dif-
fract  the  incident  electron  beam  more  effectively,  which  res-
ults  in  higher  contrast.  For  the  traditional  manual  processing
method, processing a large number of in situ STEM images is
nearly  impossible.  Machine  learning  based  approaches  are
highly  effective  and  are  increasingly  applied  in  the  tasks  of
atomic defects localization, identification, and classification.

Ziatdinov et al.,  for instance, take advantage of a weakly-
supervised  FCN  to  identify  defects,  including  vacancies  and
doping atoms in STEM images. The FCN model contains an en-
coder-decoder  structure,  which  turns  the  last  fully-connec-
ted  layer  of  the  conventional  CNN  into  a  convolution  layer,
and outputs the probability mapping of each pixel correspond-
ing to various atoms or defects; as shown in Fig. 4(a). This ap-
proach could start with a few labeled general defects and can
identify complex defects, even those not in the training set, re-
quiring less human intervention[72].

The  quantity  and  quality  of  the  labeled  TEM  dataset  are

Table 1.   The main parameters of TEM data analysis that is based on machine learning of different types of material properties.

Classification Algorithm Data type Training Dataset Testing Dataset Accuracy Ref.

Defect

FCN (weakly supervised) STEM Simulation Experiment ~97% [64]
CNN and U-Net (supervised) STEM Simulation Experiment 98% [64]
U-Net (supervised) STEM Simulation Simulation – [66]
U-Net (supervised) HRTEM Experiment Experiment 93.17% [61]

Morphology

AutoDetect-mNP (unsupervised) TEM Experiment Experiment 85%–95% [68]
FCN (regression&classification) STEM Simulation Simulation 85%–93% [69]
CNN STEM Simulation Simulation 95% [60]
U-Net TEM Experiment Experiment – [63]
Genetic algorithm TEM Experiment Experiment 99.75% [70]

Structure
CNN FFT Simulation Simulation >97% [62]
CNN HRTEM Simulation Simulation 90.5% [71]

Spectrum
U-Net EELS Experiment Experiment >90% [65]
Neural network (unsupervised) EDX Experiment Experiment – [67]

 

Fig. 3. (Color online) Application of artificial intelligence for high-effi-
cient  processing  of  various  TEM  datasets.  FCN,  CNN,  and  UDN  are
short  for  fully  convolution  network,  convolutional  neural  network,
and unsupervised deep network, respectively.
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critical  for  training  a  network  with  high  accuracy.  However,
there is still lack of high-quality labeled TEM datasets. As an al-
ternative  to  labeled  experimental  data,  the  simulated  TEM
data with accurate ground truth is easier to obtain. The multis-
lice  calculation-based  algorithm  is  usually  applied  for  TEM
data  simulation,  including  STEM  images[60, 64].  The  simulated
STEM  images  are  generated  to  train  the  model,  and  experi-
mental  images  are  used  as  the  test  dataset.  After  the  center
and  contour  of  individual  atoms,  the  atom  positions  and  the
chemical  bond  configurations  can  be  explored;  as  presented
in Figs.  4(b)  and 4(c).  By  analyzing  each  frame  of  the in  situ
STEM images,  the  defect  evolution with  the  variation  of  time
is quantitively studied Figs. 4(d)−4(f).

Using  the  FCN  algorithm,  the  atom  positions  and  types

in a lattice are recognized with high accuracy, enabling effect-
ive defect determination. The presented algorithm can be ex-
tended to other automatic TEM image analysis that relates to
the atomic position.

Similar  to  medical  images,  TEM  images  usually  suffer
from  background  noise  and  vague  boundaries.  According  to
the advanced algorithm for medical  image recognition,  redu-
cing background noise during the image analysis is required.

To reduce the raster distortion during STEM image acqui-
sition, fast imaging speed is required. This results in a low sig-
nal-to-noise  ratio  (SNR)[64].  Improving  the  SNR  before  apply-
ing  the  CNN-based  algorithm  for  STEM  image  processing
could increase the accuracy of the results. Yang et al. innovat-
ively  adopt  an  automated  method  based  on two  neural  net-

 

Fig. 4. (Color online) The introduction of a neural network in the analysis of atomic defects[72].  (a) Schematic architecture of a CNN with an en-
coder-decoder  structure.  (b)  Location  of  carbon  atoms  of  graphene.  (c)  The  extracted  dopant  Si  atoms  and,  in  this  way,  the  classification
between 3-fold and 4-fold Si defects is conducted. (d) The evolution of the same Si dopant on the time scale. (e) Classification of defect types. (f)
Extraction of the defect from STEM images.
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works to improve the image SNR and complete the image seg-
mentation of atomic defects and dopants in 2D transition met-
al  dichalcogenides  (TMDs)[64].  A  CNN-based algorithm (super-
vised  learning)  with  a  dilated  convolutional  kernel  is  first  ap-
plied  as  a  denoiser  to  the  raw  experimental  images.  Simu-
lated  ADF  STEM  images  obtained  by  multislice  calculations
are used to get  a  high-quality  training dataset,  and the noise
signal is simulated by the Poisson distribution. Using this meth-
od,  the  SNR  and  the  atomic  contrast  of  the  experimental
STEM  image  are  enhanced,  as  shown  in Figs.  5(a)–5(c).  From
high-contrast  input  images,  various  defects  (including  atom
doping  and  atomic  vacancies)  are  clearly  identified  in  the  V-
WSe2 by a U-Net algorithm with an accuracy of up to 98%. In
addition,  the dynamic behaviors  of  different  defects  under  e-
beam  stimulus  can  also  be  unveiled,  as  shown  in Figs.  5(d)
and 5(e).

The U-Net model has been widely used in processing med-
ical images and it shows excellent performance in defect classi-

fication. The U-Net algorithm has skip connections and concat-
enation  operation  that  could  identify  features  of  different
scales  and  achieve  good  accuracy  with  a  small  dataset;  as
shown in Fig. 5(f)[52].  In addition, U-Net adopts an overlap-tile
strategy,  which  generates  no  overlapping  range  and  con-
ducts  a  seamless  segmentation  to  input  of  any  size.  This
strategy benefits  the learning efficiency,  especially  in scenari-
os with limited annotated training datasets or unscalable raw
images.  Except  for  the  point  defect  recognition,  a  line  defect
(e.g.,  a  nanopore border)  can also  be identified and analyzed
by  the  U-Net  algorithm;  as  shown  in Figs.  5(g)  and 5(h)[61].
The CrTe2 nanopore healing process induced by the synergist-
ic effect of electron beam irradiation and heating field is cap-
tured  by in  situ TEM.  Over  1300  TEM  images  that  were
labeled by hand are used for U-Net training. After 100 epochs
training,  the  DICE  metric  reaches  93.17%,  showing  an  effect-
ive line defect recognition by the U-Net algorithm.

The  rapid  development  of  machine  learning  aided  TEM

 

Fig. 5. (Color online) Introduction of CNN-based algorithm for atomic-scale identification of point and line defects[61, 64]. (a) A CNN as a denoiser
process. (b, c) Comparison of the signal-to-noise between the unprocessed and processed images. (d) Defect mapping of STEM image. (e) The stat-
istics of Se vacancies and V dopants change according to the electron beam irradiation time. The scale bar is 5 nm. (f) The architecture of U-Net.
(g, h) The border recognition of a nanopore.
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data recognition makes the real-time characterization and ana-
lysis of defects during the in situ TEM operation possible. The
immediate  feedback  of  the  defect  evolution  information
could  further  guide  the in  situ TEM  experiment  along  a
planned  road,  which  accelerates  material  mechanism  discov-
ery with high efficiency. 

2.2.  Analysis of the morphology

Many  efforts  have  been  made  to  study  the  morphology
of nanoparticles (NPs), which govern the physical and chemic-
al  properties  of  the  nanomaterial.  The  morphology  of  a
sample  reflects  the  types  of  its  exposed  surfaces,  which  has
an impact on its catalytic activity[89, 90]. The morphology evolu-
tion  process  also  unveils  the  stability  or  growth  kinetics  of
the  NP[91−97].  TEM  can  characterize  the  morphology  of  nano-
material  with  atomic  resolution.  The  2D  projections  of  3D
particles  that  are  obtained  from  TEM  are  usually  studied  for
their  morphological  features.  In  general,  NP  analysis  includes
three stages: morphology capture, filtering, and shape classific-
ation. The foreground and the background need to be separ-
ated to locate and isolate the individual particles. Then, in the
dataset  of  detected  targets,  filtering  is  required  to  eliminate
the superimposed or abutted particles that may be wrongly re-
cognized  and  disturb  the  statistical  result.  Finally,  the
particles are put through the classification process and the dis-
tribution  map  is  presented.  The  descriptors,  based  on  which
the  particles  are  divided,  primarily  include  solidity,  area,  con-
vexity,  eccentricity,  circularity,  aspect  ratio,  and  angular  dis-
tance.  Two  approaches  are  introduced  as  the  determined  at-
tempts of NPs.

A  completely  unsupervised  method,  called  AutoDetect-
mNP, was introduced by Wang et al. to identify the shape attri-
bution  of  Au  NPs  (Fig.  6(a)).  To  differentiate  the  individual
particles  and  the  background,  the  algorithm  adopts  K-means
image  segmentation.  During  the  TEM  imaging  process,  Au
particles (due to their high mass and high lattice packing effi-
ciency)  show  intense  interaction  under  an  e-beam  from  a
TEM,  thus  generating  a  strong  contrast  in  the  images.  Partly
because  of  this  high  contrast  between  the  foreground  and
the  background,  the  adopted  simple  computer  vision  ap-
proach proves sufficient for this stage. The nanorods are classi-
fied after going through a filtration for convexity and solidity.
For  the  classifier,  this  study  uses  a  combination  of  K-means
clustering and naive Bayes classification to serve the purpose
of  being  totally  unsupervised;  shown  in Fig.  6(b).  As  a  result,
this  approach  has  a  great  performance  for  both  efficiency
and  accuracy  when  compared  to  the  previous  methods  for
the analysis  of  Au nanorods.  It  also reduces the bias by redu-
cing  human  input.  However,  when  adapted  to  materials  that
show lower contrast, such as palladium (Pd) and cadmium sel-
enide  (CdSe)  particles,  the  unsupervised  K-means  image  seg-
mentation may not be good enough for identification.

A  supervised  method  is  a  promising  solution  to  pursue
high  precision  in  machine  learning  based  NP  detection.  Lee
et  al.  explored  an  approach  based  on  a  genetic  algorithm
(GA)  to  analyze  the  morphological  properties  of  NPs,  with  a
precision as high as 99.75%; as shown in Fig. 6(c)[70]. Using nat-
ural selection for reference, the GA filtrates the genes accord-
ing to a specified standard, and only those with the best per-

 

Fig. 6. (Color online) Introduction of two machine learning based methods in morphology analysis of gold particles[63, 68, 70]. (a, b) A complete unsu-
pervised clustering algorithm utilized in classification of gold nanorods. (c) A GA containing various image analysis methods as genes to explore
the morphological characteristics of NPs. (d) NPs segmented by U-Net with boundaries. (e) The intensity of the four types of NPs and the back-
ground in the TEM images explored by U-Net. (f) Boundaries of NPs colored to their local etching rates and the etching time indicate the height.
(g) The three etching stages defined by the relationships between the etching rate and curvature.
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formance  can  be  the  survivors.  The  leftover  genes  go
through  the  same  course  of  evolution,  mutation,  and  filtra-
tion.  The  surviving  genes  are  considered  as  the  optimal  res-
ult.  In  this  study,  locating  the  NPs  is  not  only  the  case,  but
properly  separating  or  deserting  the  superimposed  particles
based  on  the  extent  to  which  they  are  abutted  is  also
needed.  Various imaging processing methods (i.e.,  threshold-
ing and watershed transform) can be used to compose the vari-
ables. The aim is to explore the optimal variable-variable com-
bination  utilized  in  the  morphology  analysis  in  the  NP  sys-
tems. High-scoring images (genes) of every round are stacked
in  the  algorithm  to  pile  up  the  detected  NPs,  and  thus  aug-
ment  the  statistical  significance.  After  the  images  are  filtered
with  the  GA  algorithm  and  processed  with  the  optimal  com-
position  of  various  imaging  analysis  techniques,  they  are
clustered  and  their  distribution  is  analyzed  statistically  to  be
ready for further research.

Yao et  al.  introduced  a  U-Net  model  to  extract  informa-
tion  of  physical  and  chemical  properties[63].  Their  machine
model was fed with the training set constituted by simulated
liquid-phase  images.  Beer’s  law,  Poisson  noise,  and  Gaussian
noise are considered to simulate the liquid-phase imaging un-
der e-beam. First,  the boundaries of  NPs in each frame in the
TEM  video  are  located,  based  on  which  the  intensity  of  four
categories of gold nanorods and background is calculated; as
shown in Figs. 6(d) and 6(e). Second, during etching, the nanor-
od  boundaries  are  tracked  and  marked  colored  to  their
curvature.  The  height  and  etching  rate  are  monitored  in  real
time.  Finally,  from  the  statistical  analysis  of  the  big  dataset,
three  stages  are  concluded,  showing  how  the  etching  rate
changes.  Its  interrelation  with  curvature  is  shown  in Figs.  6(f)
and 6(g).

In the liquid-phase TEM video, the contrast fluctuation ap-
pears  to  be  a  primary  challenge.  The  different  thickness  and
orientation of  each nanorod result  in  contrast  variation,  even
in the same image. Even for the same particle, the motions at
the time scale lead to a shift in the intensity diagram. Such fluc-
tuation  cases  happen  randomly  and  inevitably,  and  have
been  longstanding  obstacles  in  liquid-phase  TEM  movie  pro-
cessing.  Due  to  the  unique  skip-connection  structure,  the  U-
Net algorithm includes various factors, such as intensity, mor-
phology,  and  local  surroundings  in  the  process  of  segmenta-
tion,  while  the  previous  thresholding  approaches  include
only  the  intensity  of  the  pixels.  U-Net  structures  are  suitable
in segmentation tasks  for  liquid-phase TEM images that  have
contrast fluctuations and low SNR. The advantages of the ap-
plication  of  U-Net  models  are  the  robust  segmentation,  high
tolerance  over  low-quality  images,  intensity  fluctuation  and
many  other  defects  of  the  sample.  The  robust  segmentation
of the U-Net favors the precise and efficient tracking of bound-
aries and analysis of the particle properties.

For  the  morphology  of  materials,  the  thickness  is  closely
related to the intrinsic properties, such as bandgap and optic-
al  properties[98−100].  Both  HRTEM  and  the  recently  developed
4D-STEM  images  contain  the  thickness  information  of  the
TEM  sample.  The  HRTEM  and  4D-STEM  are  TEM  imaging
modes with atomic spatial resolution. The HRTEM uses a paral-
lel  electron  beam  to  form  images,  and  the  phase  contrast  is
generated  from  the  interference  of  electrons  that  interacted
with  and  without  the  sample  atoms.  The  4D  STEM  image
uses  a  pixelated  signal  detector  to  get  the  conventional  2D

STEM  image  and  2D  diffraction  pattern  at  the  same  time  to
form the 4D-STEM data. Compared with the traditional STEM,
4D-STEM  provides  more  information  for  sample  property  ex-
traction[101−103].

Since the sample is projected as 2D in TEM images, the re-
cognition of column heights out of 2D images has been a pop-
ular  topic.  Here,  two  works  are  introduced  to  evaluate  the
atom  numbers  in  the  atom  columns  that  present  the  thick-
ness of the sample. Two different convolutional networks, a re-
gression  CNN  (r-CNN)  and  a  classification  CNN  (c-CNN),  are
used  in  these  two  works  for  the  recognition  of  HRTEM  and
STEM images, respectively. The two models are trained and ap-
plied to estimate the column heights of metallic NPs. The res-
ults of the two methods are compared to clarify their suitabil-
ity.

First,  Ragone et  al.  detect  the  atomic  column  heights  of
metal  particles  with  two  automated  methods  based  on
CNN[69].  Simulated TEM images with the labeled ground truth
are calculated by QSTEM[104]. The brief architecture and the res-
ult example of the column height prediction of the model are
shown  in Figs.  7(a)  and 7(b).  Based  on  HRTEM  images,  both
the  networks  determine  the  heights  based  on  the  values  of
pixels.  In the classification CNN model,  the output of the net-
work  is  a  probability  map  of  the  thickness  of  NPs,  indicating
the  discrete  classes  of  the  values  of  their  heights.  In  this
study, a maximum height of 15 atoms is considered to be suffi-
cient,  and  the  output  classes  of  thickness  are  from  1  to  16.
The  so-called  regression-based  model  is  not  usually  attrib-
uted  to  a  standard  segmentation  task.  Unlike  the  discrete
classes in the classification output, the pixel values of TEM im-
ages  are  deemed  to  have  a  continuous  decrease  from  the
column’s center to background. After being trained with simu-
lated TEM images,  the  model  correlates  each pixel  to  a  value
of the predicted height. From the comparison of the two meth-
ods,  the regression-based model  is  reported to  be approxim-
ately  10%  more  accurate  than  the  classification  model.  The
contrast of HRTEM is sensitive to the degree of defocus. The in-
fluence  of  defocus  to  image  recognition  accuracy  is  evalu-
ated as shown in Fig.  7(c).  The low defocus and low dose im-
ages have relatively low accuracy.

Second, in Zhang et al. the convergent beam electron dif-
fraction  (CBED),  namely  4D  STEM,  is  adopted  to  assist  the
CNN-based  thickness  detection[60].  As  is  shown  in Fig.  7(d),
the  positive-averaged  CBED  (PACBED)  pattern  of  Sr  particles
is  obtained and used to  generate  a  thickness  prediction map
through a CNN. Both the c-CNN and the r-CNN determine the
number  of  unit  cells  overlapping on one column.  In Fig.  7(e),
the result of c-CNN is listed in the red frame and the r-CNN is
in  the  blue  frame.  A  comparison  of  the  two  models  shows
that  both  models  are  sufficient  on  sample  thicknesses  within
40 nm, and have varying degrees of falling in accuracy as the
thickness increases. The r-CNN performs better in fine estima-
tion  of  thickness  but  requires  more  effort  to  be  trained.
However,  the  c-CNN  has  lower  precision,  especially  for  thick
samples. 

2.3.  Structural analysis

Crystal  structure  governs  material  properties,  and  the
carbon  allotropes  are  typical  examples.  Even  for  carbon  nan-
otubes  (CNTs),  the  different  structures  that  are  determined
by  chiral  indices  show  distinct  electric  properties.  Further-
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more,  2D  materials  with  the  same  composition  could  have
different  electrical  properties[105, 106].  For  example,  the  2H
phase MoS2 is  semiconductive and the 1T phase MoS2 is  me-
tallic[107, 108]. The diffraction mode of TEM is widely used to de-
termine  crystal  structures,  from  the  microscale  to  the  nano-
scale.  The  diffraction  pattern  that  conforms  to  Bragg's  law
has  a  bright  contrast.  The  positions  of  the  diffraction  spots
with  respect  to  the  center  transmission  spot  determine  the
crystal  structure.  HRTEM  unveils  atomic  configuration  and
can also be used for structure studies, such as chiral indices.

The  classification  of  crystal  structures  can  benefit  from
the  use  of  neural  networks.  Ziletti et  al.  adopted  an  auto-
mated method to classify the structure of a dataset of 3D ma-
terials  based  on  their  crystal  symmetry[62].  To  skirt  the  much
prior  expertise  that  was  traditionally  required in  classification
algorithms,  this  research  uses  the  ConvNet  and  the  architec-
ture  that  is  shown  in Fig.  8(a).  ConvNet  performs  well  in  im-
age  recognition  and  can  learn  features  in  classification.  The
first  step  to  analyze  3D  structures  in  2D  images  is  to  find  a
proper  descriptor  to  represent  the  material.  Diffraction  pat-
terns in x-axis, y-axis and z-axis overlapped in one image deleg-
ated  by  red,  green  and  blue  are  introduced  to  represent  the
crystal  structures[62].  Note  that  the  quadrature  axis  is  arbit-
rary, and little is required to be known about the sample’s crys-
tal  symmetry.  It  is  the  crystal  structure  rather  than  the  atom-
ic  composition  that  matters  in  the  representation  patterns,
which  makes  this  approach  suitable  for  a  good  classifier  be-
cause it differs the representations of diverse classes while re-
ducing  the  difference  between  structures  of  the  same  class
due  to  its  robustness  to  defects.  Given  that  the  crystal  struc-
tures have been transformed into more understandable diffrac-
tion fingerprints, 90% and 10% data are used for training and

testing,  respectively.  Simulated  crystal  structures  coupled
with  random  displacements,  substituting  atoms  and  vacan-
cies are combined to create an ideal dataset containing defect-
ive systems. Although the neural network itself in general fig-
ures  out  the  features  to  be  used  in  the  task,  it  can  be  in-
ferred that the classification is conducted based on the diffrac-
tion  peak  and  their  positions.  As  is  shown  in Figs.  8(c)  and
8(d), the network shows robustness in tasks to categorize crys-
tal structures, even in the case of structural transitions.

The properties  of  CNT are  primarily  determined by  chiral
indices[109, 110].  In  the  analysis  of  chiral  indices,  the  diameter
and the chiral angle are the focus of research, which can be as-
sisted by machine learning-based methods. Georg Daniel For-
ster  et  al.  conducted  the  analysis  task  for  chiral  indices  with
the  help  of  a  neural  network  based  on  the  classical  LeNet-5,
which  proves  to  be  effective  on  the  HRTEM  image  of  CNTs
shown in Fig. 8(e)[71]. Trained by simulated images with consid-
eration of defects, this method was able to identify and classi-
fy the diameter of the nanotube by extracting of a contrast in-
tensity  profile  (i.e.,  the  distance  between  the  dark  and  bright
fringes). The chiral angle is measured through a Fourier Trans-
form (FT). From the correlation matrix of the manual and auto-
mated results,  especially  in  low diameter  nanotubes,  the  ma-
chine  learning-based  method  shows  high  accuracy  in  chiral
structure  determination  of  CNTs;  as  shown  in Figs.  8(f)  and
8(g).

Diffraction  pattern  identification  is  one  of  the  most
widely used operations during TEM characterization. The crys-
tal  structure  determination  algorithm  can  be  extended  for
automatic  diffraction  pattern  identification,  which  is  of  great
significance  when  building  an  intelligent  TEM  operation  sys-
tem. 

 

Fig. 7. (Color online) Application of machine learning based methods in the analysis of atomic column heights. (a) A CNN illustration as an ex-
ample of the supervised network utilized in the analysis. (b) Comparison between ground truth and prediction after regression and classification
on STEM images. (c) Results of the network with various defocus values and electron dose. (d) The sub-unit cell calculated and mapped from a
4D-STEM dataset. (e) Comparison between c-CNN and r-CNN measurement and HAADF estimation.
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2.4.  Spectra analysis

The local composition and the atom valence state are im-
portant information that influence the properties of a materi-
al.  There  are  two  methods  for  chemical  analysis  in  TEM:  en-
ergy-dispersive  X-ray  spectroscopy  (EDX)  and  electron  en-
ergy-loss  spectroscopy  (EELS).  Both  of  them  can  be  obtained
in  the  STEM  mode.  The  EDX  is  the  characteristic  X-ray  signal
that is emitted from the ionized atoms that are stimulated by
the  incident  electron  beam.  EDX  is  collected  in  the  STEM
mode  and  has  a  nanoscale  even  atomic-scale  resolution.  The
EELS  signal  results  from  the  inelastic  scattering  interaction
between the incident electron and atoms in the TEM sample.

EELS  is  a  powerful  tool  to  probe  local  chemical  informa-
tion  with  atomic  resolution[111−115].  The  spatial  environment
of  an electron in the TEM sample can be obtained by analyz-
ing  the  energy  loss  of  the  diffracted  electron  beam[116−118].
The  analysis  of  massive  generated  EELS  data  is  still  challen-
ging.  To tackle this challenge,  Roccapriore et al.  presents two
convolutional  neural  networks  to  establish  a  relationship
between  the  NP  geometries  and  the  plasmon  responses[65].
In  this  way,  spectral  response  can  be  determined  by  analyz-
ing the structural imaging, which takes much less time to gen-
erate when compared to the spectral spectrum from the spec-
troscopy.  In  the  Im2spec  network,  when  the  local  subimages
around  specific  locations  (special  descriptor)  are  input,  the
EEL spectra associated with the local configuration are presen-
ted;  as  shown in Fig.  9(a);  and vice versa,  in  the spec2im net-
work in Fig. 9(b), the spectra descriptors are considered as fea-
tures, and the images of local configuration as targets are pre-
dicted  by  the  network.  In  general,  the  mutual  relationship

between  local  configurations  of  NPs  and  the  corresponding
plasmon spectra diagram is established in the study. In many
common  cases,  the  result  can  be  considered  to  be  a  basis  in
theoretical  models.  While  for  models  that  are  not  suitable  to
directly adopt this result, the establishment procedure is of ref-
erential significance. Although the obtained model is not suit-
able for  the direct  analysis  of  other  TEM datasets  with similar
features,  the  network  trained  with  this  methodology  could
be applied as a pre-trained model for transfer learning in new
TEM data analysis. Moreover, the pretreatment of training data-
set  and  optimization  of  the  network  structure  can  improve
the generalization ability of the model[119, 120].

EDX  spectra  can  be  obtained  during  STEM  imaging  with
a  high-spatial  resolution  for  composition-related  studies  of
nanomaterials.  Due  to  the  sensitivity  of  nanomaterials  to  the
STEM electron beam, the acquired EDX spectra have to be lim-
ited and the scan speed has to be fast to reduce the electron-
beam-induced  defects.  These  experimental  conditions  result
in  a  small  number  of  obtained  EDX  spectra  with  high  back-
ground noise, which is a considerable challenge for EDX spec-
tra  analysis.  Han et  al.  offers  two  unsupervised  deep  net-
works  to  tackle  these  problems,  a  denoising  network  and  a
two-step  neural  network,  which  generate  high-resolution  3D
EDX  spectra;  as  shown  in Figs.  10(a)–10(c)[67].  The  two-step
neural network first produces an intermediate noisy 3D recon-
struction using the raw EDX projection data and then the pro-
jection data obtained from the noisy 3D reconstruction is en-
hanced  using  CNN.  The  consistency  restriction  is  applied  to
guarantee that the calculated EDX spectra conform to the ex-
perimental  data  at  the  same  angle.  The  two-step  neural  net-

 

Fig. 8. (Color online) Application of CNN in structure analysis. (a) The workflow of deploying a neural network model to automatically classify struc-
ture. (b–d) Two-dimensional diffraction patterns of different crystal structures are divided into eight classes in SAED. (e) An illustration of a CNN(Le-
Net-5) with a computer-simulated training dataset. (f) Comparison between manual and automatic classification. (g) Correlation matrix of the res-
ults of the two methods.
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work can be applied to generate a large quantity of EDX spec-
tra,  even at  the unmeasured angles.  Because only the experi-
mental data are used as the restrict condition, the neural net-
work does not need a large number of labeled spectra for su-
pervised training. Automatic EDX spectra processing and 3D re-
construction can be used in the chemical-property analysis of
nanomaterials
 

3.  Conclusion

In  this  paper,  machine  learning  for in  situ TEM  is  re-

viewed.  Automated  TEM  data  analysis  has  been  summarized
from  the  aspects  of  morphology,  defect,  structure,  and  spec-
tra by machine learning. The merits of machine-learning meth-
ods for the corresponding data analysis tasks are discussed. Al-
though the application of machine learning for TEM data ana-
lysis  is  a  vibrant  field  and  it  is  developing  quickly,  there  are
still several challenges, as follows:

(1)  Natural  and  medical  images  have  many  datasets  for
network training and testing. However, there are few TEM data-
sets.  Because  of  the  data-driven  feature,  high  quality  and

 

Fig.  9.  (Color  online)  Introduction  of  the  use  of  a  neural  network  to  explore  the  correlative  laws  between  local  geometries  and  plasmon  re-
sponses[65]. (a) The im2spec network, in which subimages are taken as features and spectra are taken as targets. (b) The spec2im network, which
is trained with HAADF spatial descriptors and corresponding spectral descriptors, similar to the im2spec network. However, the spectra are used
as features and subimages are used as targets.
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large  quantities  of  TEM  datasets  are  critical  to  achieve  a
trained network that has good performance. Image data aug-
mentation of a manually annotated database could be a solu-
tion  to  this  problem.  Some  studies  have  created  simulated
TEM  images  to  meet  the  requirement  of  a  much  larger  data-
base  with  less  labor.  In  addition,  optimizing  a  network  struc-
ture so that it requires less training data and still maintains per-
formance could be an alternative solution to this problem.

(2) Machine-learning algorithms for TEM data analysis are
usually  optimized  for  a  specific  scenario.  Models  and  net-
work structure for TEM usually have so far been tailored for cer-
tain types of microscope images and materials. However, meth-
ods restricted in these conditions could lose robustness when
adapted  to  new  cases.  Therefore,  algorithms  suitable  for
more general TEM data analysis need to be developed. At the
present stage, the automation TEM data analysis is mainly fo-
cused on material.  Electronic device characterization data ob-
tained  by in  situ TEM  and  corresponding  machine  learning
based  data  analysis  (especially  for  the  interfaces)  are  re-
quired.

(3)  With  the  increased  time  and  spatial  resolution  of in
situ TEM  characterization,  the  large  amount  of  data  that  are
generated  in  a  short  time  create  a  challenge  of  data  transfer
and storage. Recently, compressing large amounts of data for
electron  microscopy  by  deep  compressive  sensing  learning
has been reported[121].

(4) Most of the machine-learning methods adopted in ana-
lysis  of  TEM  images  are  supervised.  The  unavoidable  human
bias of this method generates deviations in results, even from
experts. Therefore, approaches that have fewer human interac-
tions or unsupervised-algorithm aided methods should be de-

veloped for use in TEM. 
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